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Abstract

Android native system services provide essential supports and
fundamental functionalities for user apps. Finding vulnerabil-
ities in them is crucial for Android security. Fuzzing is one of
the most popular vulnerability discovery solutions, yet faces
several challenges when applied to Android native system
services. First, such services are invoked via a special inter-
process communication (IPC) mechanism, namely binder,
via service-specific interfaces. Thus, the fuzzer has to recog-
nize all interfaces and generate interface-specific test cases
automatically. Second, effective test cases should satisfy the
interface model of each interface. Third, the test cases should
also satisfy the semantic requirements, including variable
dependencies and interface dependencies.

In this paper, we propose an automated generation-based
fuzzing solution FANS to find vulnerabilities in Android na-
tive system services. It first collects all interfaces in target
services and uncovers deep nested multi-level interfaces to
test. Then, it automatically extracts interface models, includ-
ing feasible transaction code, variable names and types in the
transaction data, from the abstract syntax tree (AST) of target
interfaces. Further, it infers variable dependencies in transac-
tions via the variable name and type knowledge, and infers
interface dependencies via the generation and use relation-
ship. Finally, it employs the interface models and dependency
knowledge to generate sequences of transactions, which have
valid formats and semantics, to test interfaces of target ser-
vices. We implemented a prototype of FANS from scratch and
evaluated it on six smartphones equipped with a recent ver-
sion of Android, i.e., android-9.0.0_r46 , and found 30 unique
vulnerabilities deduplicated from thousands of crashes, of
which 20 have been confirmed by Google. Surprisingly, we
also discovered 138 unique Java exceptions during fuzzing.

*Part of this work was done during Baozheng Liu’s research internship at
Alpha Lab of 360.

1 Introduction

Android has become the most popular mobile operating sys-
tem, taking over 85% markets according to International Data
Corporation'. The most fundamental functions of Android
are provided by Android system services, e.g., the camera
service. Until October 2019, hundreds of vulnerabilities re-
lated to Android system services had been reported to Google,
revealing that Android system services are still vulnerable and
attractive for attackers. A large portion of these vulnerabilities
reside in native system services, i.e., those mainly written in
C++. Vulnerabilities in Android native system services could
allow remote attackers to compromise the Android system,
e.g., performing privilege escalation, by means of launching
IPC requests with crafted inputs from third-party applications.
Finding vulnerabilities in Android native system services is
thus crucial for Android security.

However, to the best of our knowledge, existing researches
paid little attention to Android native system services. Apart
from a non-scalable manual approach [7], two automated
fuzzing solutions have been proposed to discover vulnera-
bilities in Android system services. The first one is Binder-
Cracker [6], which captures input models of target services
by recording requests made by 30 popular applications. An
inherent disadvantage of this approach is that it cannot re-
cover precise input semantics, e.g., variable names and types.
Also, it will miss rarely-used or deeply-nested interfaces, due
to the incomplete testing. The other one is Chizpurfle [10],
which utilizes Java reflection to acquire parameter types of
interfaces to test vendor-implemented Java services. However,
such a method cannot be used to retrieve the input model of
Android native system services.

In Android, system services are registered to the Service
Manager. User apps query the manager to get the target
service’s interface (encapsulated in a proxy Binder object),
then invoke different transactions provided by this interface
via a unified remote procedure call (RPC) interface named
IBinder: :transact (code,data, reply, flags), where,

Uhttps://www.idc.com/promo/smartphone-market-share/os



(1) code determines the target transaction to invoke, and (2)
inputs of the transaction are marshalled into the serialized
parcel object data. Thus, we could utilize this unified
IPC method to test all system services. To thoroughly
test target services, we could first find all interfaces and
available transactions, and then invoke them with input data
satisfying service-specific formats and semantic requirements.
Specifically, there are three challenges to address:

C1: Multi-Level Interface Recognition. In addition to the
(top-level) interfaces registered in the Service Manager,
there are nested multi-level interfaces, which could be re-
trieved via the top-level interface and invoked by user apps.
For example, the IMeoryHeap interface is buried at the fifth-
level (i.e., invoked via four layers of interfaces). Therefore,
we need to recognize all top-level interfaces and nested multi-
layer interfaces, in order to systematically test Android system
services. Given that many interfaces are defined in Android
Interface Definition Language (AIDL) rather than C++ and
dynamically generated during compilation, we have to take
them into consideration as well.

C2: Interface Model Extraction. For each interface, we
need to get the list of supported transactions (i.e., code) to
test, and then provide input data to invoke each transaction.
To improve the fuzzing effectiveness, the input data should
follow grammatical requirements of target interfaces. Manu-
ally providing the grammar knowledge is not scalable. Auto-
matically extracting such knowledge from the large volume
of Android source code is also challenging. First, the gram-
mar is specific to an individual transaction, and thus we have
to recognize all available transactions and extract grammars
for each of them. Second, the grammar requirements co-exist
with the path constraints, e.g., branch conditions, loop condi-
tions and even nested loops, making it hard to be extracted
and represented.

C3: Semantically-correct Input Generation. Android it-
self performs many sanity checks (e.g., size check) on the
input data. Therefore, inputs that do not meet semantic re-
quirements can hardly explore deep states or trigger vulner-
abilities. There are many types of semantic requirements,
including variable names and types, and even dependencies
between variables or interfaces. For instance, a variable named
packageName indicates an existing package’s name is re-
quired; a variable of an enumeration type can only have a
limited set of candidate values; a variable in current transac-
tion may depend on another variable in either the current or
previous transaction, and even an interface may depend on an-
other interface. Recognizing such semantic requirements and
generating inputs accordingly are important but challenging.

Our Approach. In this paper, we propose a generation-
based fuzzing solution FANS to address the aforementioned
challenges. To address the challenge C1, FANS first recog-
nizes all top-level interfaces by scanning service registration
operations, and utilizes the fact that deep interfaces are gener-

ated by invoking the special method writeStrongBinder to
identify multi-level interfaces. For C2, we notice that, Android
system services always use a set of specific deserialization
methods (e.g., readInt32) to parse input data. By recogniz-
ing the invocation sequence of such methods, we could infer
the grammar of a valid input. To preserve the knowledge of
variables’ names and types, we choose to extract the deserial-
ization sequence (i.e., the input grammar) from abstract syntax
tree (AST). For C3, we will utilize the variable name and type
knowledge extracted from the AST to generate proper inputs
and recognize intra-transaction variable dependency. Further,
we rely on the fact that a dependent transaction will deserial-
ize data serialized by the depended transaction, to recognize
inter-transaction variable dependency. Moreover, we rely on
the generation and use relationship between interfaces to infer
their dependencies.

We implemented a prototype of FANS from scratch, inter-
mittently examined it on six mobile phones equipped with the
recent Android version android-9.0.0_r46 for about 30 days.
FANS has discovered 30 unique vulnerabilities deduplicated
from thousands of crashes. To our surprise, FANS also found
138 unique Java exceptions, yielded by Java applications that
might depend on Android native system services. Besides,
we dig into the code and observe that some Android native
system services would also invoke Java methods. We have
submitted all native bugs to Google, and received 20 con-
firmations. As for the Java exceptions, we are working on
examining them manually and submitting them to Google.
To facilitate future research, we open source the prototype of
FANS at https://github.com/iromise/fans.

Contributions. In summary, this paper makes the following
contributions:

o We systematically investigated the dependency between
interfaces in Android native system services, and un-
earthed deeper multi-level interfaces.

e We proposed a solution to automatically extract input
interface model and semantics from AST. This method
can be applied to other interface-based programs.

e We proposed a solution to infer inter-transaction depen-
dencies, by utilizing variable name and type knowledge
in serialization and deserialization pairs in different trans-
actions.

e We implemented a prototype of FANS to systematically
fuzz Android native system services, and have found
30 unique native vulnerabilities and 138 unique Java
exceptions.

2 Background

In this section, we start by introducing the Android system
service. Then we provide the research scope of this paper.
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Figure 1: Application-Service Communication Model

2.1 Android System Services

System services are essential parts of Android, providing the
most fundamental and core functionalities.

Systematization of Android System Services. Depend-
ing on the programming language, Android system services
can be divided into two categories: (1) Java system ser-
vices, which are implemented mainly using Java, e.g., activity
manager. (2) native system services, which are implemented
mainly using C++, e.g., camera service. Some Android native
system services run as daemons, e.g., netd. Note that a native
service might sometimes call java code and vice versa.

From another perspective, the services are divided into
three domains since Android 8, including normal domain,
vendor domain and hardware domain. Services in normal do-
main are services directly located in Android Open Source
Project (AOSP), while services inside vendor domain and
hardware domain are related to vendors and hardware respec-
tively.

Application-Service Communication Model. Figure 1 il-
lustrates the workflow of the application-service communi-
cation in Android. A service will first register itself into the
service manager, and then listen to and handle requests from
applications. On the other hand, an application will query the
service manager to obtain the interface (encapsulated in a
proxy Binder object) of the target service, which is denoted
as a top-level interface. Then, it can utilize the top-level inter-
face to retrieve a multi-level interface or to call transactions
provided by the interface to perform certain actions. Further,
the application could retrieve deeper multi-level interfaces
and invoke corresponding transactions. Apart from the enti-
ties illustrated in the figure, there is another important entity,
i.e., binder driver, which bridges the communication between
applications and services. However, as the binder driver is not
strictly relevant to our research, we omit it in the figure.

Interfaces in Android System Services. As mentioned
earlier, apps invoke target transactions in top-level interfaces
via a unified RPC interface IBinder::transact (code,
data, reply, flags). Therefore, it implies that on the ser-
vice side there is a dispatcher responsible for handling
the request based on the transaction code. This dispatcher

is defined in a unified method onTransact (code, data,
reply, flags). This dispatcher (or the target transaction)
will then deserialize the input data and perform the action
requested by the client. In general, every service has a set of
methods that can be called through RPC. They are declared
in a base class, but implemented in the client-side proxy and
the server-side stub separately. The binder driver bridges the
proxy and stub objects to communicate.

This mechanism also applies to multi-level interfaces, as
multi-level interfaces share the same architecture with top-
level interfaces. However, unlike top-level interfaces, the
Binder objects corresponding to multi-level interfaces are not
available in the service manager, and could only be retrieved
via top-level interfaces.

Besides, not all interfaces are statically defined in C++, and
some of them are defined in the Android Interface Definition
Language (AIDL). When building an Android image, AIDL
tools will be invoked to dynamically generate proper C++
code for further compilation.

2.2 Research Scope

In this paper, we focus on discovering vulnerabilities in the
Android native system services, which are registered in the
service manager and belong to the normal domain. To the
best of our knowledge, existing researches have paid little
attention to them. Meanwhile, as all Android system services
share the same architecture in the aspect of communication
and interface implementation, the scheme proposed in this
paper can be applied to other types of services as well.

3 Design

To find vulnerabilities in Android native system services,
we propose a generation-based fuzzing solution FANS, and
present its design in this section.

3.1 Design Choices

RPC-centric testing: There are several alternative solutions
to testing Android native system services. A straightforward
solution 1is to test target transactions by directly injecting
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Figure 2: Overview of FANS.

service-specific events to the system, without calling the uni-
fied binder communication interface transact. However,
there are a lot of engineering challenges to address in order
to inject events to different services located in different pro-
cesses. More importantly, vulnerabilities found in this way
are likely to be false alarms, because the adversary in practice
cannot generate arbitrary events. Instead, the adversary has to
interact with target services via the IPC interface, and could
only produce a limited number of events for the following two
reasons: (1) the binder IPC mechanism will perform some
sanity checks, e.g., on packet size; and (2) the data marshalled
into a parcel might depend on some dynamic system states
and are thus not arbitrary. To reduce false positives, we choose
to test target services via the RPC interface, as could be done
by an adversary.

Generation-based fuzzing: In general, there are two types
of fuzzers: mutation-based [4, 25], which generates new
test cases by mutating existing test cases, and generation-
based [5, 19], which generate test cases according to an input
specification. Mutation-based fuzzers are likely to generate
test cases of invalid formats or semantics, which cannot be
correctly deserialized or processed by target services. There-
fore, such fuzzers tend to have low code coverage of target
services and may miss many potential vulnerabilities. To re-
duce false negatives, we choose to test target services with
generation-based fuzzing.

Learn input model from code: Generation-based fuzzers
rely on input model knowledge to generate valid and effec-
tive test cases. A large number of generation-based fuzzers,
including PEACH [5], Skyfire [20] and Syzkaller [19], rely
on grammar files produced by human to generate test cases,
which generally require huge manual efforts and are currently
unavailable for Android services. Another line of works, e.g.,
BinderCracker [6], learn from existing transactions to gener-
ate new inputs. This type of solutions is in general incomplete,
since it relies on the completeness of example transactions and

2Some generation-based fuzzers also utilize mutations to increase the
diversity of test cases.

will probably overlook rarely-used transactions. Moreover,
the input model learned in this way is in general inaccurate,
since only transaction data is given. On the other hand, we
notice that the input model knowledge is buried in the source
code, and choose to analyze Android source code to automat-
ically retrieve the input model.

3.2 Overview

Figure 2 illustrates the design overview of our solution FANS.
First, the interface collector (Section 3.3) collects all inter-
faces in target services, including top-level interfaces and
multi-level interfaces. Then interface model extractor (Sec-
tion 3.4) extracts input and output formats as well as vari-
able semantics, i.e., variable names and types, for each can-
didate transaction in each collected interface. The extractor
also collects definitions of structures, enumerations and type
aliases that are relevant to variables. Next, the dependency
inferer (Section 3.5) infers interface dependencies, as well as
intra-transaction and inter-transaction variable dependencies.
Finally, based on the above information, the fuzzer engine
(Section 3.6) randomly generates transactions and invokes
corresponding interfaces to fuzz native system services. The
fuzzer engine also has a manager responsible for synchro-
nizing data between the host and the mobile phone being
tested.

3.3 Interface Collector

As demonstrated in Section 2.1, top-level or multi-level in-
terfaces both have the onTransact method to dispatch trans-
actions. Thus, we could utilize this feature to recognize in-
terfaces. We do not directly scan C/C++ files in the AOSP
codebase for the onTransact method, though. Instead, we
examine every C/C++ file that appears as a source in AOSP
compilation commands, so that we can collect interfaces that
are dynamically generated by AIDL tools during compilation,
which will be overlooked otherwise.



3.4 Interface Model Extractor

To effectively generate test cases, FANS will extract inter-
face models of target services. Here, we briefly introduce
the design principles and design choices of interface model
extraction, then detail how to extract the interface model, in-
cluding transaction code, input and output variables, as well
as type definitions.

3.4.1 Principles of Extraction

Three principles are recommended when designing the inter-
face model extractor:

Complete: As we want to fuzz Android native system ser-
vices systematically, we need to obtain a complete set of
interfaces, together with all transactions of them. All of the
interfaces have been collected by interface collector.

Precise: Since the target interfaces will fall back on ex-
ception handling when invalid random inputs are given in
the transaction request, we need a precise interface model to
generate valid inputs that pass sanity checks. We handle the
precision of the model from the following aspects: variable
patterns, variable names and variable types. The variable
pattern implies input formats, as will be discussed later. The
other two aspects help generate semantically correct inputs.

Convenient: Ideally, a convenient method should be
adopted for interface model extraction. Besides, we had better
find a unified approach to handle both the interfaces defined
in C++ and those defined in AIDL.

3.4.2 Design Choices of Extractor

With the above principles in mind, we have made the follow-
ing design choices for the extractor:

Extract from Server Side Code: In Android, client apps
call target transactions with the RPC interface transact.
The service, i.e., the server side, handles the RPC with the
onTransact method. This correlation means that we can ex-
tract all possible transactions on either side. We prefer to
analyze the server side for the following two reasons: (1) It
is service that we are to fuzz, and directly dealing with the
server side will give us a more accurate view of what inputs
the server-side code expect, as well as how services use in-
puts deserialized from data and outputs serialized into reply.
(2) An interface has multiple transactions, whose definitions
and implementations are in general closely distributed in the
server-side code. On the other hand, client-side code may
invoke them in a scattered way, causing trouble for interface
model extraction.

Extract from the AST Representation: There are many
representations of the code. We have to choose a proper one to
base the analysis on. First, since some interfaces are defined

in AIDL, a candidate solution is to extract the interface model
from AIDL files. However, this method will miss a wide range
interfaces directly implemented in C++ in the Android source
code. We can convert files of one format to another format to
address this issue. Here we choose to convert AIDL files to
C++ files because: (1) Existing AIDL tools can generate C++
implementations of interfaces defined in AIDL files without
losing information. (2) Converting C++ implementations to
AIDL files is not trivial and might decrease the precision of
the interface model. It may lose some important information,
when, for example, a variable is available under a specific
path condition.

After converting AIDL files to C++ files, another choice
is to extract the interface model from an intermediate rep-
resentation (IR), e.g., the LLVM IR provided by the Clang
compiler. But IRs usually optimize out some information,
e.g., type aliases, making it harder to extract precise interface
information.

On the other hand, the AST is a good representation for
interface model extraction. In the AST, variable names and
variable types are kept intact. Also, every type cast expression
is recorded in AST. In addition, the compiler resolves all
header file dependencies and provide types in correct order
in the AST. Thus, we can process the AST sequentially to
resolve the original type of a typedef type. Besides, the AST
provides a clear view of all transaction codes of each interface
in the onTransact dispatcher, as shown in Figure 2. Lastly,
each statement (e.g., sequential statement and conditional
statement) is separated in the AST. These characteristics make
it convenient to extract the interface model from the AST
representation.

3.4.3 Transaction Code Identification

As described in Section 2.1, the onTransact function in a tar-
get interface dispatches the control flow to target transactions
according to the transaction code. This dispatch process is
usually implemented as a switch statement in the C++ source,
and converted to multiple case nodes in the AST, where each
case represents a transaction to invoke. Therefore, we can
readily identify all transactions of a target interface by ana-
lyzing case nodes in the AST and recognize the associated
constant transaction code.

3.4.4 Input and Output Variable Extraction

After identifying transaction codes, we need to extract inputs
deserialized from the data parcel in each transaction. Besides,
as we would like to infer inter-transaction dependencies, we
also need to extract transactions’ outputs which are serialized
into the reply parcel.

Specifically, there are three possible classes of variables
used in a transaction:

e Sequential Variables. This type of variables exists with-

out any preconditions.



/! checkInterface

CHECK_INTERFACE(IMediaExtractorService , data,
reply);

3 /1 readXXX

Stringl16 opPackageName=data.readStringl6 () ;

pid_t pid = data.readInt32();

/!l read(a,sizeof (a)*num)

effect_descriptor_t desc = {};

data.read(&desc, sizeof(desc));

/! read(a)

10 Rect sourceCrop (Rect::EMPTY_RECT) ;

11 data.read(sourceCrop);

12 // readFromParcel

13 aaudio :: AAudioStreamRequest request;

14 request.readFromParcel(&data);

15 // callLocal

16 callLocal (data, reply , &ISurfaceComposerClient::

createSurface);
17 // function call
18 setSchedPolicy (data);

T TS

© o

Listing 1: Sequential Statement Example

e Conditional Variables. This type of variables depends
on some conditions. If these conditions are not satisfied,
the variables could be NULL or do not appear in the data,
or even have a different type than when the conditions
are satisfied.

e Loop Variables. This type of variables are deserialized
in loops, and even nested loops.

These three types of variables correspond to three types
of statements in the program exactly, i.e., sequential state-
ment, conditional statement and loop statement. As a result,
we will mainly process these kinds of statements in the AST.
Besides, we will also consider the return statement. The rea-
son will be detailed in the corresponding part. Moreover, as
onTransact function processes inputs and outputs similarly,
we only demonstrate the details with input variables.

A. Sequential Statement: As shown in Listing 1, there are

mainly seven kinds of sequential statements:

(1) checkInterface. The server will check the interface to-
ken (unique for every interface) given by the client at
the beginning of each transaction. If the interface token
does not match, it will just return, which suggests that we
cannot fill random bytes into data parcel.

(2) readXXX. In Line 4, readStringl6 deserializes a com-
mon type, i.e., Stringlé, from the data parcel. The vari-
able name also holds some semantics. In this case, the
opPackageName should be a package name. Besides, in
Line 5, readInt32 reads a int32_t variable, while the
left-hand-side variable type is pid_t. In such a case, we
will always choose the type with richer semantics as the
variable type, i.e., pid_t. We will also apply this strategy
to type cast expressions.

(3) read(a, sizeof(a) * num). In this circumstance, the server
will directly copy a raw structure or an array from the
data parcel. In Line 8, the server reads a structure whose
type is effect_descriptor_t.

(4) read(a). Here, the server will read a Flattenable or Light-

1 int32_t isFdValid = data.readInt32();

2> int fd = —1;
5 if (isFdValid) {
4 fd = data.readFileDescriptor();

5}

Listing 2: Conditional Statement Example

Flattenable structure. In Line 11, the server reads a Light-
Flattenable structure Rect.

(5) readFromParcel. This kind of sequential statement
is special in that the deserializtion process happens
in another class or structure which implements the
Parcelable interface. In Line 14, the server reads a class
whose type is aaudio: :AAudioStreamRequest.

(6) callLocal. Taking Line 16 as an example, calllocal
method will process the arguments of createSurface
one by one. If the variable type is not a pointer, it is con-
sidered as an input variable. Otherwise, it is considered
as an output variable.

(7) Misc Function. For those special input formats, the data
parcel will be passed into a function. In Line 18, the data
parcel is passed into the function setShedPolicy. For
such a case, we will mark this input as a function and
recursively handle the data. Moreover, this indicates we
should also collect the file which includes the correspond-
ing function, e.g., setSchedPolicy in this case.

B. Conditional Statement: There are several kinds of con-
ditional statements, e.g., if statement and switch statement.
Here we demonstrate our approach to the if statement. As
shown in Listing 2, whether Line 4 will be executed or not
is decided by the isFDValid variable. In such a case, we
consider fd as a conditional input. Besides, we record the
condition for £d to get a more precise interface model.

C. Loop Statement: There are several forms of loop state-
ments, e.g., for statement and while statement. Here we
demonstrate our approach to the for statement. As shown
in Listing 3, we record the number of times key is read,
i.e., size. We consider key, fd and value as loop vari-
ables. Moreover, there might be a kind of for statement,

data.readInt32 () ;
0;index<size; ++index){

I const int size
o> for (int index

4 const String8 key(data.readString8());
if (key == String8 ("FileDescriptorKey")){

int fd = data.readFileDescriptor();

9 } else {
10 const String8 value(data.readString8());

Listing 3: Loop Statement Example



I const uint32_t numBytes=data.readInt32();

2 if (numBytes >MAX_BINDER_TRANSACTION_SIZE) {
reply —>writeInt32 (BAD_VALUE) ;

4 return DRM_NO_ERROR;

50}

Listing 4: Return Statement Example

for (auto i: vector), which does not explicitly declare
the cycle count. We heuristically guess that the cycle count is
the previous value read from the parcel before the for state-
ment, e.g., size in Line 1. Furthermore, we can observe that
there is also a conditional statement, which implies that these
types of statements can be nested together.

D. Return Statement: Return statement is special among
these statements. During a transaction, several return state-
ments might appear, which lead to different execution paths.
If a path returns an error code, it implies that this path is
less likely to have vulnerabilities. Thus, we will assign this
path a low probability, which means that fewer test cases
taking this path will be generated. As Listing 4 shows, if
numBytes is larger than MAX_BINDER_TRANSACTION_SIZE,
the function will simply return an error code DRM_NO_ERROR.
In such a case, we should try not to generate a value
larger than MAX_BINDER_TRANSACTION_SIZE when generat-
ing numBytes. Besides, it will also help us generate explicit
inter-transaction dependency, as inputs that do not satisfy the
dependency usually fall back to error handling paths.

3.4.5 Type Definition Extraction

Apart from extracting input and output variables in trans-
actions, we also extract type definitions. It helps enrich the
variable semantics so as to generate better inputs. There are
three kinds of types to analyze:

o Structure-like Definition. This kind of types includes
union and structure. We could easily extract the member
of these kinds of objects from the AST.

¢ Enumeration Definition: As for enumeration type, we
should extract all given (constant) enumeration values.

typedef int __kernel_pid_t;
typedef __kernel_pid_t __pid_t;
typedef __pid_t pid_t;
typedef struct effect_descriptor_s {
effect_uuid_t type;
6 effect_uuid_t uuid;
uint32_t apiVersion;
8 uint32_t flags;
9 uintl6_t cpulLoad;
10 uintl16_t memoryUsage;
11 char name [ EFFECT_STRING_LEN_MAX];
12 char implementor [EFFECT_STRING_LEN_MAX];
13 } effect_descriptor_t;

Listing 5: Typedef Statement Example

o Type Alias: There are many typedef statements in
AOSP. As shown in Listing 5, pid_t is actually
an int type. As a result, we could generate vari-
ables of type pid_t with random integers. Besides,
effect_descriptor_t in Listing 1 is actually struct
effect_descriptor_s. Without such typedef knowl-
edge, we could not generate semantics-rich inputs.

Also, as AOSP is a monolithic project, we need to add

the namespace to variable types so as to avoid conflicts when
extracting these kinds of type knowledge. Besides, guaranteed
by the compiler, all headers used by the C/C++ files will
be included in AST in order. As a result, we can collect
definitions of all related types.

3.5 Dependency Inferer

After extracting interface models, we infer two kinds of depen-
dencies: (1) interface dependency. That is, how a multi-level
interface is recognized and generated. It also implies how an
interface is used by other interfaces. (2) variable dependency.
There are dependencies between variables in transactions.
Previous researches rarely consider these dependencies.

3.5.1 Interface Dependency

In general, there are two types of dependencies between inter-
faces, corresponding to the generation and use of interfaces.

Generation Dependency If an interface can be retrieved
via another interface, we say that there is a generation depen-
dency between these two interfaces. As introduced in Section
2.1, we can get Android native system service interfaces, i.e.,
top-level interfaces, directly from the service manager. As re-
gards multi-level interfaces, we find that upper-level interface
will call writeStrongBinder to serialize a deep interface
into reply. In this way, we can easily collect all generation
dependencies of interfaces.

Use Dependency If an interface is used by another inter-
face, we say that there is a use dependency between these two
interfaces. We find that when an interface A is used by another
interface B, B will call readStrongBinder to deserialize A
from data parcel. Hence, we can utilize this pattern to infer
the use dependency.

3.5.2 Variable Dependency

There are two types of variable dependencies, i.e., intra-
transaction and inter-transaction dependency, based on
whether the variable pair is in a same transaction.

Intra-Transaction Dependency One variable sometimes
depends on another in the same transaction. As demonstrated
in Section 3.4.4, there could be conditional dependency, loop
dependency, and array size dependency between variables in a
transaction. Conditional dependency refers to the case where
the value of one variable decides whether another exists or



Algorithm 1 Inference of Inter-Transaction Dependency

Input: Interface Model (M)
Output: Inter-Transaction Dependency Graph (G)

G={}
I =[] // input variables
O =[] // output variables

for variable in M do
if variable is input then
add variable into I
end if
if variable is output then
add variable into O
end if
end for
for iVar in I do
for oVar in O do
if iVar.txID != oVar.txID then
if iVar.type==oVar.type then
if iVar.type is complex then
add edge (iVar, oVar) into G
else if iVar.name and oVar.name are similar then
add edge (iVar, oVar) into G
end if
end if
end if
end for
end for

not. For example, f£d in Listing 2 conditionally depends on
isFdvalid. Loop dependency refers to the case where one
variable decides the number of times another is read or written,
as the variables size and key in Listing 3. For the last one,
the size of an array variable is specified by another variable.
When generating this array variable, we should generate the
specified number of items.

Inter-Transaction Dependency A variable sometimes de-
pends on another variable in a different transaction. In other
words, input in one transaction can be obtained through output
in another transaction. We propose Algorithm 1 to deal with
this kind of dependency. Specifically, we extract the inter-
transaction dependencies following the principles below: (1)
one variable is input, and the other is output; (2) these two
variables are located in different transactions; (3) input vari-
able’s type is equal to the output variable’s type; @) either
the input variable type is complex (not primitive type), or the
input variable name and the output variable name are similar.
The similarity measurement algorithm can be customized.

3.6 Fuzzer Engine

After inferring the dependencies, we can start fuzzing An-
droid native system services. Firstly, the fuzzer manager will
sync the fuzzer binary, interface model, and dependencies to
mobile phone and start the fuzzer on the smartphone. Then
the fuzzer will generate a test case, i.e., a transaction and its
corresponding interface to fuzz the remote code. Besides, the

fuzzer manager will sync the crash logs from smartphones
regularly. Here we mainly demonstrate the test case generator,
as other parts are straightforward in FANS. Interested readers
could refer to the source code we open source for details.

When fuzzing Android native system services, we are
fuzzing the transaction specified by the transaction code.
Therefore we can randomly generate a transaction at first
and then invoke its corresponding interface.

Transaction Generator We can generate input variables of
a transaction one by one based on the interface model. During
the generation, we follow the principles in order as below.

e Constraint First. If a variable is constrained by another
variable, we should check the constraints before gener-
ating the variable. For instance, as shown in Listing 2,
isFDValid should be checked before generating fd.

e Dependency Second. If a variable can be generated by
other transactions, we should use them to generate it
with a high probability. In such circumstances, we should
generate the dependent transaction first, and then get the
output from the corresponding reply parcel. Also, we
do not follow this principle for a low probability.

e Type and Name Third. We may generate a variable
according to its type and name, no matter the aforemen-
tioned dependencies exist or not. For example, in Listing
1, we will generate a valid package name (Stringlé)
for opPackageName. Besides, we will generate a valid
process ID (int) for pid. For a complex type, we will
generate its members recursively according to this rule.

Interface Acquisition As for top-level interfaces, we can
get them through the service manager. Multi-level interfaces
can then be recursively obtained via the recognized interface
dependency.

4 Implementation

We implemented a prototype of FANS from scratch, rather
than developing one based on an existing fuzzer, e.g.,
AFL [25], for the following reasons. First, it takes huge en-
gineering work to port AFL to Android. Second, AFL-based
fuzzers are effective at testing one standalone program or
service, thus we have to compile and test each target service
one by one, which is non-scalable. Third, AFL is not effective
at testing service-based applications, including the binder IPC
based services. Table 1 shows the statistics of this implemen-
tation.

Interface Collector To be able to collect interfaces effi-
ciently, we first compile the AOSP codebase, recording the
compilation commands in the meantime. Then we walk these
commands while scanning for the characteristics pointed out



Table 1: Implementation Details of FANS

Component Language LoC
Interface Collector Python 145
Interface Model Collector ~ C++, Python 5238
Dependency Inferer Python 291
Fuzzer Engine C++, Python 5070
Total C++, Python 10744

in Section 3.3 and Section 3.4.4. This step can be easily im-
plemented with Python.

Interface Model Extractor As we are extracting interface
models from AST, we first convert the compilation commands
to ccl commands while linking with the Clang plugin which
is used to walk the AST and extract a rough interface model.
We do an approximate slice on the AST and only preserve
statements relevant to input and output variables, omitting
others. Finally, we do a post-process on the rough model so
that fuzzer engine can easily use it. The interface model is
stored in JSON format.

Dependency Inferer Given the interface model described
with JSON, dependency inferer traverses the model and makes
interface dependency inference as explained in Section 3.5.1.
Besides, dependency inferer will also get the inter-transaction
dependency according to Algorithm 1.

Fuzzer Engine We implement a simple fuzzer manager
so as to run fuzzer on multiple phones together with sync-
ing data between host and smartphones. We build the en-
tire AOSP with ASan enabled. The fuzzer is implemented
in C++ as a native executable. As some Android native sys-
tem services check the caller’s permission when receiving
RPC requests, the fuzzer is executed under root privilege.
To accelerate the execution, we always make asynchronous
RPCs through marking the f1ag argument of transact as
1 when the outputs in reply are not needed. When we do
need the outputs in reply, e.g., dependency inference, we
make synchronous calls. Finally, in order to analyze triggered
crashes, we use the builtin logcat tool of Android for log-
ging. Besides, we will also record native crash logs located in
/data/tombstones/.

5 Evaluation

In this section, we evaluate FANS to answer the following

questions:

(1) How many interfaces have been found? What is the rela-
tionship between them? (Section 5.1)

(2) What does the extracted interface model look like? Is the
model complete and precise? (Section 5.2)
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Figure 3: Interface Statistics: 43 top-level Android native
system interfaces are discovered, of which 23 are from AOSP
and 20 are generated from AIDL files. 25 multi-level Android
native system interfaces are discovered, of which 20 are from
AOSP and 5 are generated from AIDL files.

(3) How effective is FANS in discovering vulnerabilities of
Android native system services? (Section 5.3)

Experimental Setup As shown in Figure 2, we implement
the first three components on Ubuntu 18.04 with 19-9900K
CPU, 32 GB memory, 2.5 T SSD. As for test devices, we
use the following Google’s Pixel series products: Pixel * 1,
Pixel 2XL * 4, and Pixel 3XL * 1. We flash systems of these
smartphones with AOSP build number PQ3A.190801.002,
i.e., android-9.0.0_r46, which is a recent version support-
ing these devices when writing this paper. Although the An-
droid release versions are the same, the source code can be
slightly different for different Pixel models. For the following
two sections (Section 5.1, Section 5.2), we report the experi-
ment results carried out on Pixel 2XL.

5.1 Interface Statistics and Dependency

In this section, we systematically analyze the interfaces col-
lected by the interface collector and introduce the dependen-
cies among these interfaces.

5.1.1 Interface Statistics

It takes about an hour to compile AOSP. However, it only
takes a few seconds to find the interfaces in the source code.
As shown in Figure 3, multi-level interfaces account for as
many as 37% of all native service interfaces, which highlights
the necessity to examine more interfaces than registered at the
service manager. Besides, interfaces generated by AIDL tools
also take a large part, so we should extract interfaces directly
inside AOSP and interfaces generate from AIDL files. We are
not able to compare the number of interfaces discovered by
FANS with any other existing research, as none ever focused
on Android native system services.
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Figure 4: Part of the Interface Dependency Graph

5.1.2 Interface Dependency

It just takes seconds to infer the interface dependency rela-
tionship. As the full interface dependency graph is too large
(see Figure 8 in Appendix), we demonstrate the complexity of
interface dependency with one of its representative parts, as
shown in Figure 4. The deepest interface is IMemoryHeap,
whose ancestor is IMediaExtractorService. It requires
five steps to get the IMemoryHeap interface. Without depen-
dency relationships, we could not obtain such a deep interface
easily and automatically. It also comes to our notice that
a multi-level interface can be obtained from several upper
interfaces. For example, IMemory can be obtained from the
IMediaSource, IEfect, and IAudioTrack interfaces. There-
fore, we can explore different paths to fuzz a same interface.
Besides, there are some other interfaces which are neither
top-level interfaces nor multi-level interfaces, but the archi-
tecture remains the same. We call such interfaces customized
interfaces. Customized interfaces are designed to customize
system functionality as needed and can be manually instan-
tiated by developers and passed to top-level or multi-level
interfaces. For example, IEffectClient interface is trans-
ferred to some transaction A of TAudioFlinger. Transaction
A will call the method provided by the IEffectClient in-
terface later. To the best of our knowledge, we are the first
to systematically investigate the dependencies between the
interfaces in Android native system services.

5.2 Extracted Interface Model

The process of extracting a rough interface model takes about
an hour. The post-process of the interface model extractor
only takes seconds. We also give the time for inferring the
variable dependency as follows. The time used to infer intra-
transaction dependencies has already been counted into that
of extracting the interface model. As to the time for inter-
transaction dependency inference, it is also a matter of sec-
onds.
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Figure 5: Transaction Details in Interface: 530 top-level trans-
actions and 281 multi-level transactions are found. 827 top-
level transaction paths and 548 multi-level transaction paths
are found.

827(60.1%)
530(65.4%)

We start this section by discussing the extracted interface
model statistics, and then talk about the completeness and
precision of the interface model.

5.2.1 Extracted Interface Model Statistics

We discuss the extracted interface model from two aspects:
transaction and variable.

Transaction As shown in Figure 5, there are 811 trans-
actions inside the Android native system services, in which
multi-level transactions account for 281, a proportion of about
35%. Besides, in either top-level interfaces or multi-level in-
terfaces, the transaction path quantity is over 1.5 times that
of the transaction, which means many transactions hold more
than one return statement in the sliced AST. In other words,
if we do not distinguish between different transaction paths,
we cannot obtain an explicit dependency since some inter-
transaction dependencies only exist on a particular path.

Variable We only count in variables that are directly inside
onTransact. That is, we do not count variables recursively.
For instance, onTransact uses readFromParcel to read a
structure. It is only in readFromParcel that the structure’s
members are dealt with, so we exclude them from the statis-
tics. Otherwise, the statistics would be imprecise. As shown
in Figure 6, there are various types as described in Section
3.4.4, e.g., structure and file descriptor. We explain the fig-
ure from three aspects: variable patterns, type aliases, and
inter-transaction variable dependencies.

e Variable Pattern. According to variable patterns, we
divide variables into three kinds as demonstrated in
Section 3.4.4: sequential variable, conditional variable
and loop variable. We notice that few variables are in
simple sequential statements, and most variables pro-
cessed in sequential statements have String type. The
reason behind this is that nearly all interfaces check
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Figure 6: Classification Result of Variables by Variable Pattern, Type Alias, and Dependency

the interface token at the beginning of each transaction
except several SHELL_COMMAND_TRANSACTION transac-
tions and the only one GET_METRICS transaction in the
IMediaRecorder interface. In other words, almost all
variables are conditional variables. Therefore, we have
to extract the constraints imposed on variables to gener-
ate valid inputs. Constraint extraction is also necessary
for solving intra-transaction dependencies. Additionally,
it is possible for almost all variable types to occur in a
loop.

e Type Alias. As for type alias, i.e., type defined in
typedef statement, we notice that all aliases are for
three types: primitive types, enumeration types, and
structure-like types. This makes sense as we usually
use typedef statements for more semantic types, which
can be seen from List 5. By all means, we would lose
semantic knowledge of variables without these typedef
statements.

e Variable Dependency. Here we consider inter-
transaction dependencies. Since there is no dependency
on output variables, we focus on input variables.
Moreover, we generate array dependency according
to the array item type. As shown in Figure 6, there
are dependencies among almost all variable types, in
particular primitive types and the string type. Besides,
structure-like and binder-type variables can also be
generated based on dependency, which helps generate
more semantic and well-structured inputs, resulting in
deep fuzzing into Android native system services.

5.2.2 Completeness and Precision of Extracted Inter-
face Model

As there is no ground truth about the interface model, we ran-
domly select ten interfaces and manually check whether the
extracted model is complete and precise according to the prin-
ciple mentioned in Section 3.4.1. We find that we successfully
recover all the transaction codes, fulfilling completeness. Al-
most all variable patterns, variable names and variable types
are recovered as well. In conclusion, the model is not entirely

precise but good enough. What’s more, inter-transaction vari-
able dependencies are calculated with Algorithm 1 in Section
3.5.2.

As far as we know, no previous work focuses on Android
native system services, precluding any comparison. However,
we argue that most existing researches cannot handle Android
native system services effectively. Chizpurfle [10] focuses
on vendor-implemented Java services and cannot deal with
Android native system services. BinderCracker [6] tests all
services in Android but is unable to infer a more complete
and precise model than FANS when applied to Android native
system services. This is due to the fact that BinderCracker is
based on app traffic, which might miss rarely used RPCs and
lose various variable semantics like variable names and types.

5.3 Vulnerability Discovery

To evaluate how effective FANS is, we intermittently ran
FANS on our six smartphones for around 30 days. However,
we were not able to get the precise run-time of FANS during
the 30 days’ experiment due to the following reasons: (1) The
fuzzer might crash every several minutes. (2) As we ran the ex-
periment on real machines, once the Android system crashed,
we had no choice but to re-flash them manually. Moreover, the
device could enter recovery mode even when the fuzzer had
started less than ten minutes ago. These situations decreased
the fuzzing efficiency and also prevented collecting statistics
about run-time. Despite this, we have discovered 30 unique
bugs from thousands of crashes reported by FANS.

All of the 30 vulnerabilities are listed in Table 2. Apart
from the 22 vulnerabilities found in Android native sys-
tem services, there are five vulnerabilities in the libraries
libcutils.so, libutils.so and libgui.so, which are
used as public libraries in Android native system services.
Furthermore, we found three vulnerabilities in Linux system
components. For instance, we discovered a stack overflow in
iptables-restore. This program is a user-space program
for firewall configuration provided by Linux kernel. These vul-
nerabilities prove that inputs generated by FANS can drive the
control flow into deep paths under complicated constraints.



Table 2: Vulnerabilities found by FANS

Component Vulnerability File (binary or so)  AndroidID Vulnerability Type Status

1 libsensor.so - Heap user after free Reported
2 libsensor.so 128919198 Out of Memory Confirmed
3 libsensor.so 128919198 Out of Memory Confirmed
4 libsensor.so - Assertion failure Reported
5 libsensorservice.so 143896234 Tllegal fd Confirmed
6 libmediadrm.so 143897317 new_capacity overflow Confirmed
7 libmediadrm.so 143895981 new_capacity overflow Confirmed
8 libmediadrm.so 143896237  Null pointer dereference ~ Confirmed
9 libmediametrics.so 143896917  Null pointer dereference ~ Confirmed
10 libsurfaceflinger.so 143899028 invalid memory access Confirmed
11 Android Native libsurfaceflinger.so 143897162 invalid memory access Confirmed
12 System Service libaaudioservice.so 143895840  Null pointer dereference ~ Confirmed
13 libaudiopolicymanagerdefault.so - key not found Reported
14 libmediaplayerservice.so - CHECK failure Reported
15 installd 143899228 Stack buffer overflow Confirmed
16 installd 143898908 incomplete check Confirmed
17 installd - CHECK failure Reported
18 installd - CHECK failure Reported
19 statsd 143897309  Null pointer dereference ~ Confirmed
20 statsd 143895055 Out-of-bound access Confirmed
21 incidentd 143897849  Null pointer dereference ~ Confirmed
22 gatekeeperd 143894186  Null pointer dereference ~ Duplicated
23 libcutils.so 143898908 integer overflow Confirmed
24 libcutils.so 143898343  Null pointer dereference ~ Confirmed
25 Basic Library libutils.so - integer overflow Reported
26 libgui.so - mul-overflow Reported
27 libgui.so - Null pointer dereference Reported
28 iptables-restore 143894992 Stack buffer overflow Duplicated
29 Linux Component ip6tables-restore 143895407 Stack buffer overflow Duplicated
30 fsck.f2fs - heap-buffer-overflow Reported

Moreover, although we aim to discover vulnerabil-
ities in Android native system services implemented
in C++, we triggered 138 Java exceptions, such
as FileNotFoundException, DateTimeException,
NoSuchElementException, and NullPointerException.
This can be attributed to the fact that Java applications
sometimes depend on Android native system services. Some
native services also invoke Java methods. Since robustness
and stability are important for Android native system services,
these Java exceptions should not have occurred. Stricter
checks should be enforced to solve this problem.

We have reported all native vulnerabilities to Google. 20 of
them were confirmed and 18 Android IDs were given, three
of which are duplicate with undisclosed vulnerability report.
Up to now, Google has assigned moderate severity to Android
ID 143895055 and 143899228. Google has also assigned
CVE-2019-2088 to Android ID 143895055 and will put us in
their acknowledgment page in the future. Submission of Java
exceptions is in progress.

Comparison with Existing Research It is not trivial work
to compare our solution with related work. To the best of
our knowledge, BinderCracker [6] is the most relevant one.
BinderCracker works on Android system services before An-
droid 6.0, including Java system services and native system

services. However, Android began to support clang only after
Android 7.0. As we utilize an LLVM plugin to extract the
interface model, it is not easy to port our approach to lower
Android versions. Besides, BinderCracker is closed-source, so
we cannot test it on modern Android, e.g., android-9.0.0_r46.
Moreover, BinderCracker did not show detailed vulnerabil-
ity types. We are thus forced to a simple comparison of the
number of vulnerabilities discovered by the two tools. Binder-
Cracker found 89 vulnerabilities on Android 5.1 and Android
6.0, both native vulnerabilities and java exceptions included.
Although we only focus on Android native system services,
we found 30 native vulnerabilities and 138 Java exceptions,
way more than 89. We believe this comparison is convincing
that FANS is superior over BinderCracker as Android security
has been improving over the years.

5.4 Case Studies

We present three vulnerabilities discovered by FANS. Firstly,
we look into the root causes of these vulnerabilities and
demonstrate how to trigger vulnerabilities. Also, we explain
how design choices (e.g., categorizing variables as sequential,
conditional, and loop ones) help generate inputs that trigger
vulnerabilities. Secondly, we show our insights into these
vulnerabilities and devise mitigation for them.



5.4.1 Case Study I: new_capacity overflow Inside read-
Vector of IDrm

Attack There are multiple new_capacity overflow vul-
nerabilities in IDrm, a second-level interface obtained via
IMediaDrmService. The bugs are all triggered by the
same function, BnDrm: : readVector. The function invokes
insertAt to allocate a buffer whose size is decided by the
variable size in data. Inside insertAt, there is a sanity
check on the insertion index, which will return BAD_INDEX
in case of a lousy index. However, no check is made on the
size argument. According to the interface dependency graph,
FANS could generate IDrm interface automatically. When
it comes to the variable name size, FANS generates some
dangerous values, e.g., -1, which can easily trigger the vulner-
ability. We could further achieve DoS attack through this kind
of vulnerability, preventing other apps from using necessary
services.

Insight Buffer allocation is a core step in IPC, and also
a very vulnerable one. Vulnerabilities can easily occur dur-
ing this process if the server puts any trust in the client and
skips necessary sanity checks. Unfortunately, this problem
is prevalent among Android native system services and is
persistent. In BnDrm alone, the problematic readvector is
called for more than 30 times, making an easy target for at-
tackers. Performing proper sanity checks would effectively
mitigate this problem. Nevertheless, it is not an easy task
considering the mass body of Android source codes. For-
tunately, there are safely implemented deserialization func-
tions provided by Parcel, which perform input validations.
These standard functions are preferable to the error-prone
customized functions. In this case, replacing readvVector
with Parcel: :readByteVector would fix the vulnerability
neatly.

5.4.2 Case Study II: Out-of-bound Access Inside infor-
mAllUidData of statsd

Attack The native system service statsd is a daemon in
Android 9. In the transaction Call::INFORMALLUIDDATA,
statsd deserializes three vectors from data par-
cel containing items of int32_t, int64_t and
::android::Stringl6é respectively. These vectors
are passed into informAllUidData and then forwarded to
the updateMap method of UidMap. Function updateMap
iterates on the three vectors in a loop. The size of vector uid
out of the three is used as the loop count. Since items in any
one vector are supposed to have a one-to-one correspondence
to those in the other two vectors, the three vectors are
expected to have the same length, so that the iteration
can work normally. Nevertheless, this requirement is left
unchecked. Out-of-bound access can then be achieved by
passing in a longer vector of uid than the rest two. In order
to generate the malformed transaction, FANS first identifies
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Figure 7: Call Trace of ip(6)tables-restore stack overflow

the variable types of these three inputs from AST. Then it
generates these vectors one by one through (1) generating the
vector size; (2) generating the corresponding number and type
of elements. However, existing work like BinderCraker [6]
might not be able to generate such effective inputs as it
ignores the semantics of these variables.

Insight In this case, the same index is used for different
vectors, resulting in an OOB vulnerability. This bug, just as
the last case, arises from failure in input validation. Never-
theless, it is a more interesting bug. Hopefully it can yield
an exploitation other than DoS if appropriately used. This
case demonstrates FANS’s ability to discover meaningful
bugs. Google has already fixed this vulnerability and assigned
CVE-2019-2088 to us. So we do not give the mitigation here.

5.4.3 Case Study III: Stack Overflow Inside ip(6)tables-
restore

Attack An unexpected stack overflow bug is found to re-
side in the ip(6)tables-restore binary. As we focus on An-
droid native system services, we do not find the vulner-
ability directly. It is found when we fuzz the netd dae-
mon, whose interface file is generated automatically. We
craft in_ifName with a sufficiently long string quoted in
the transaction Call::WAKEUPADDINTERFACE, then it calls
wakeupAddInterface. Finally it triggers the stack overflow
vulnerabilities in the add_param_to_argv function.

Figure 7 gives the detailed execution path. However, we
still need to craft in_ifName carefully as the string is de-
serialized from data parcel through readUtf8FromUtfl6
which executes many checks. To take the last step towards
successful attack, FANS tags in_ifName with utf8=true
when extracting the interface model. Later FANS uses the
corresponding serialization method writeUt£8AsUtf16 to
serialize in_ifName into data, which can pass the sanity
checks. In contrast, BinderCracker [6] may well miss such
transactions because popular apps rarely use them. Even if it
could get such a transaction input format, it would randomly
mutate the traffic which is likely to fail quickly in the checks
mentioned above.



Insight This vulnerability crosses three processes: attacker
process, netd and ip (6) tables-restore. In other words,
this bug is buried deep. Furthermore, although we mainly
focus on fuzzing Android native system services, we find a
vulnerability in a Linux component. It suggests that there is a
close relationship between Android system services and basic
Linux components. In the light of this, we can assert that there
is another way to fuzz Linux components. Besides, these two
bugs are also present in iptable package and can be found
on a regular Linux distribution. They have been fixed by the
netfilter team in April 2019 and assigned CVE-2019-11360.
So here we do not give the mitigation. However, at the time
of writing this paper, they have not been fixed in Android.

6 Discussion

We have demonstrated FANS’s effectiveness in excavating
vulnerabilities in the Android native system service. Now we
discuss its limitations and what we will do in the future.

Interface Model Accuracy Although we have tried our
best to extract the interface models, the interface model is
not perfect. For example, we assume that the loop size is the
previous variable before the loop when we can not get the
loop size directly. However, for loop statements that traverse
a linked list, the loop size is undetermined, not as we guess. In
such circumstances, we believe that it is not easy to improve
it. Besides, even if a developer defines a semantic type some-
where, he might accidentally use the original type instead of
the type alias. Thus we can not get a more semantic variable
type, which would also affect the variable dependency gener-
ation. Other than those mentioned above, the dependency we
got might be incomplete because there might exist specific
order between the transaction calls as service can be seen as
a state machine. However, as we are fuzzing, if we always
follow the specified order, we may miss some vulnerabili-
ties. Meanwhile, we have already found some vulnerabilities
caused by incomplete state machine processing in service.

Coverage Guided Fuzzing Nowadays, coverage guided
fuzzing is popular. For FANS, even though we do not use
coverage knowledge of Android native system services, we
find many vulnerabilities in system services audited by many
experts. However, to our belief, guided with coverage, FANS
can find more vulnerabilities. Moreover, as system service is
state-sensitive, its coverage might be affected by inputs gen-
erated previously or by other applications’ calls. This could
be a challenge when integrating coverage to FANS.

Fuzzing Efficiency As some Android system services run
as a daemon or might check the caller’s permission, for conve-
nience, we run fuzzer as root. Nevertheless, the root privilege
is very high, which can change lots of things. During the

experiment, we found that a smartphone can enter into re-
covery mode even just after starting the fuzzer ten minutes.
As a result, we needed to flash the phone manually, which
significantly affects the efficiency of FANS. We think this can
be solved, either limiting the privilege of fuzzer or finding a
way to flash the device automatically.

Interface-based Fuzzing in Android In Android 9, there
mainly exists three kinds of services located in different do-
mains: normal domain, vendor domain and hardware domain.
In Pixel series products, applications can access only normal
domain services registered in the service manager. In this pa-
per, we mainly pay attention to the native system services in
normal domain. However, these three kinds of services share
the same architecture in the aspect of communication and in-
terface implementation. Consequently, we could easily trans-
fer the method demonstrated in this paper to other domain
services, even service implemented in Java language. Besides,
there also exist some similar interfaces, i.e., customized in-
terfaces, which do not belong to the parts mentioned above.
These interfaces are designed to be implemented and instan-
tiated by applications and passed to the server-side by the
clients. We can also fuzz these implementations with the
methods proposed in this paper. The major drawback is that
we need to instantiate these interfaces manually.

7 Related Work

IPC and Service Security in Android While the security
of the Android operating system has always been the focus
of academic and industrial research, similar researches for
IPC and system services are deficient. In early times, vul-
nerable Intents were widely exploited in attacking userland
applications. Therefore, the main target of the previous re-
searches [2,11, 16] on IPC in Android was the Intent.

Gong [7] is the first one who paid attention to the Binder
IPC interface. He pointed out Binder is the actual security
boundary of Android system services, and proved it inse-
cure by discovering critical vulnerabilities manually. Wang
et al. [12] further proposed a solution to fuzz Java interfaces
generated from AIDL files, while Chizpurfle [10] targeted
vendor implemented Java services. Further, there are some
researches [3,26] that focus on input validation vulnerabilities
related to Android services. Several other researches [1,8,17]
concentrate on the inconsistency of access control in the An-
droid framework related to Android services.

BinderCracker [6] extends the testing to native services. It
monitors the IPC traffic of several popular user apps, and tries
to understand the input model and transaction dependencies
through the recorded traffic, then generates new test cases
accordingly. However, this solution highly depends on the
diversity of the recorded traffic and is not effective. First, it
cannot systematically recognize all interfaces including multi-



level interfaces to test, and cannot recognize the complete
dependencies between interfaces, either. Second, the interface
model and the transaction dependencies inferred from the
traffic are neither (1) complete, since the traffic may overlook
rarely-used transactions; nor (2) precise, since the inference is
made from data which has lost many information (e.g., types).

Fuzzing for Structured Input Numerous approaches have
been proposed to generate structured input for fuzzing. Gen-
erally, they fall into two categories. Generation-based fuzzers
generates test cases from templates or predefined grammar.
Peach [5] is one of the most popular fuzzer based on tem-
plates. DomFuzz [15] utilized grammar to generate dom
structures for the target program. These methods suffer man-
ual participation and poor scalability. Thus more advanced
researches [9, 20, 22, 23] are proposed to handle this limi-
tation. Mutation-based fuzzers mutate existing test cases to
generate new ones without any input grammar or input model.
VUzzer [14] runs dynamic taint analysis (DTA) to capture
common characteristics of valid inputs. TaintScope [21] uses
DTA to identify the checksum field. T-Fuzz [13] also bypasses
sanity checks and fuzzes the guarded codes directly. Some
recent fuzzing tools [18,24,27], referred to as hybrid fuzzers,
combine fuzzing with concolic execution. This may be a
promising way of fuzzing programs with structured inputs.

8 Conclusion

In this work, FANS is designed to meet the challenges in
fuzzing Android native system services. Experiments have
validated its ability to automatically generate transactions and
invoke the corresponding interface, which greatly helps to
fuzz Android native system services. Our evaluation shows
that FANS is also capable of inferring the complex depen-
dencies between these interfaces. Moreover, we discover that
the interface model is very complex in three aspects: variable
pattern, type alias and variable dependency. We intermittently
ran FANS on our six smartphones for around 30 days and
reported 30 native vulnerabilities to Google, of which 20 have
been confirmed. These vulnerabilities imply that without a
precise interface model, we could not fuzz Android native sys-
tem services deeply. Surprisingly, 138 Java exceptions were
also exposed, which may deserve further study.
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